StarRocks as a Vector Database – Architecture, Scaling, and Best Practices
StarRocks as a Vector Database
Enterprise Architecture, Scaling, and Production Best Practices
Introduction: The Vector Search Imperative
In the rapidly evolving landscape of AI and machine learning, vector search has emerged as a critical infrastructure component powering next-generation applications. From semantic search and recommendation engines to Retrieval-Augmented Generation (RAG) pipelines, organizations need high-performance vector databases capable of handling billion-scale embeddings with sub-second query latency.
The traditional approach involves dedicated vector databases like Pinecone, Weaviate, Qdrant, or Milvus. While these solutions excel at vector similarity search, they often create architectural complexity when organizations need to combine vector search with traditional analytical queries, real-time filtering, or complex joins across structured and unstructured data.
Enter StarRocks – a modern OLAP database that has evolved beyond traditional analytics to become a compelling vector database solution. Originally forked from Apache Doris and optimized for real-time analytical processing, StarRocks now offers native vector support, HNSW indexing, and the unique ability to perform hybrid queries that combine vector similarity search with complex SQL operations.
This architectural consolidation addresses several pain points that enterprises face:
- Data Silos: Embedding vectors alongside metadata in a single system
- Operational Complexity: Reducing the number of systems to manage and monitor
- Cost Optimization: Leveraging shared compute and storage resources
- Real-time Requirements: Supporting streaming ingestion with immediate query availability
For CTOs and engineering teams evaluating vector database solutions, StarRocks presents a compelling alternative that delivers vector search capabilities without sacrificing the analytical power and operational maturity of a proven OLAP platform.
StarRocks Overview: Beyond Traditional OLAP
StarRocks emerged from the need for a modern, real-time analytical database that could handle the demands of cloud-native applications. Built on a shared-nothing MPP (Massively Parallel Processing) architecture, StarRocks was designed from the ground up to deliver sub-second query performance across massive datasets.
Core Architecture Principles
StarRocks implements several advanced database technologies that make it uniquely suited for vector workloads:
- Vectorized Execution Engine: SIMD-optimized query processing that naturally extends to vector operations
- Cost-Based Optimizer (CBO): Intelligent query planning that optimizes both analytical and vector queries
- Columnar Storage: Efficient compression and encoding for high-dimensional vectors
- Real-time Ingestion: Stream processing capabilities with immediate query availability
StarRocks Cluster Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Frontend 1 │ │ Frontend 2 │ │ Frontend 3 │ │ (Leader) │ │ (Follower) │ │ (Follower) │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │ │ └───────────────────────┼───────────────────────┘ │ ┌────────────────────────────┼────────────────────────────┐ │ │ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Backend 1 │ │ Backend 2 │ │ Backend 3 │ │ - Vector Index│ │ - Vector Index│ │ - Vector Index│ │ - Tablets │ │ - Tablets │ │ - Tablets │ │ - Query Exec │ │ - Query Exec │ │ - Query Exec │ └─────────────────┘ └─────────────────┘ └─────────────────┘
Key Differentiators for Vector Workloads
What sets StarRocks apart in the vector database landscape:
- Unified Query Engine: Execute complex joins between vector similarity results and structured data
- Real-time Updates: Vector indexes automatically refresh as new embeddings are ingested
- Federated Queries: Query vectors stored in data lakes (Iceberg, Hudi) without data movement
- Enterprise Features: RBAC, audit logging, backup/restore for vector data
StarRocks as a Vector Database: Native Support
StarRocks 3.0+ introduces comprehensive vector support through native data types, indexing capabilities, and optimized query execution. This isn't a bolt-on feature – vector operations are deeply integrated into the query engine and optimizer.
Vector Data Types
StarRocks supports high-dimensional vectors through dedicated data types:
-- Float vectors (most common for embeddings) VECTOR_FLOAT(dimension) -- Example: OpenAI text-embedding-ada-002 (1536 dimensions) embedding VECTOR_FLOAT(1536) -- HNSW-optimized vectors VECTOR_HNSW(dimension) -- Example with index parameters embedding VECTOR_HNSW(768, 'metric=cosine,ef_construction=200,M=16')
Table Schema Design
Here's a production-ready table design for storing document embeddings:
CREATE TABLE document_embeddings ( id BIGINT NOT NULL, document_id STRING NOT NULL, chunk_text STRING, embedding VECTOR_FLOAT(1536), metadata JSON, created_at DATETIME DEFAULT CURRENT_TIMESTAMP(), tenant_id INT NOT NULL ) ENGINE=OLAP DUPLICATE KEY(id) PARTITION BY RANGE(created_at) ( PARTITION p20240101 VALUES [('2024-01-01'), ('2024-02-01')), PARTITION p20240201 VALUES [('2024-02-01'), ('2024-03-01')) ) DISTRIBUTED BY HASH(tenant_id) BUCKETS 32;
Distance Metrics and Query Syntax
StarRocks supports the three most common distance metrics for vector similarity:
Distance Metric | Function | Use Case | Range |
---|---|---|---|
Euclidean (L2) | L2_DISTANCE(v1, v2) | General similarity, spatial data | [0, ∞) |
Cosine | COSINE_DISTANCE(v1, v2) | Text embeddings, normalized vectors | [0, 2] |
Inner Product | IP_DISTANCE(v1, v2) | Recommendation systems | (-∞, ∞) |
Vector Query Examples
-- Basic k-nearest neighbors search SELECT id, document_id, chunk_text, COSINE_DISTANCE(embedding, [0.12, 0.45, 0.67, ...]) as similarity FROM document_embeddings ORDER BY similarity ASC LIMIT 10; -- Hybrid search: vector similarity + metadata filtering SELECT d.id, d.document_id, d.chunk_text, COSINE_DISTANCE(d.embedding, [0.12, 0.45, 0.67, ...]) as similarity FROM document_embeddings d WHERE d.tenant_id = 12345 AND JSON_EXTRACT(d.metadata, '$.category') = 'technical' AND d.created_at >= '2024-01-01' ORDER BY similarity ASC LIMIT 20; -- Complex join with user permissions SELECT d.chunk_text, d.similarity, u.username FROM ( SELECT id, chunk_text, COSINE_DISTANCE(embedding, [0.12, 0.45, 0.67, ...]) as similarity FROM document_embeddings WHERE tenant_id = 12345 ORDER BY similarity ASC LIMIT 50 ) d JOIN user_document_permissions p ON d.id = p.document_id JOIN users u ON p.user_id = u.id WHERE u.id = 67890 ORDER BY d.similarity ASC LIMIT 10;
Vector Indexing in StarRocks: HNSW Implementation
StarRocks implements Hierarchical Navigable Small World (HNSW) indexes for approximate nearest neighbor (ANN) search. HNSW provides an excellent balance between search quality (recall) and query performance, making it the industry standard for production vector databases.
Creating Vector Indexes
-- Basic HNSW index creation CREATE INDEX embedding_hnsw_idx ON document_embeddings (embedding) USING HNSW; -- Index with custom parameters CREATE INDEX embedding_hnsw_idx ON document_embeddings (embedding) USING HNSW ( 'metric' = 'cosine', 'ef_construction' = 200, 'M' = 16, 'ef_search' = 100 ); -- Check index status SHOW INDEX FROM document_embeddings;
HNSW Parameter Tuning
Understanding and tuning HNSW parameters is crucial for optimal performance:
Parameter | Description | Default | Tuning Guidelines |
---|---|---|---|
M | Max connections per layer | 16 | Higher M = better recall, more memory |
ef_construction | Size of search queue during build | 200 | Higher = better index quality, slower build |
ef_search | Size of search queue during query | 100 | Higher = better recall, slower queries |
Index Refresh and Maintenance
StarRocks automatically maintains vector indexes during real-time ingestion, but understanding the refresh behavior is important for production deployments:
-- Check index refresh status SELECT table_name, index_name, last_refresh_time, refresh_status FROM information_schema.vector_indexes WHERE table_name = 'document_embeddings'; -- Manual index refresh (rarely needed) ALTER TABLE document_embeddings REFRESH INDEX embedding_hnsw_idx; -- Monitor index memory usage SHOW PROC '/backends';
Real-Time Ingestion & Vector Pipelines
One of StarRocks' key advantages over dedicated vector databases is its sophisticated real-time ingestion capabilities. Vector embeddings can be streamed continuously with sub-second availability for ANN queries.
Ingestion Methods
Stream Loading from Kafka
-- Create routine load job for streaming embeddings CREATE ROUTINE LOAD document_embeddings_stream ON document_embeddings COLUMNS(id, document_id, chunk_text, embedding_json, metadata_json, tenant_id, created_at), COLUMNS FROM PATH AS (embedding = vector_from_string(embedding_json)) PROPERTIES ( "desired_concurrent_number" = "3", "max_batch_interval" = "10", "max_batch_rows" = "250000", "max_batch_size" = "100MB", "strict_mode" = "false" ) FROM KAFKA ( "kafka_broker_list" = "kafka-1:9092,kafka-2:9092,kafka-3:9092", "kafka_topic" = "document_embeddings", "property.group.id" = "starrocks_embeddings_consumer", "property.kafka_default_offsets" = "OFFSET_BEGINNING" );
Batch Loading
-- Broker load for large embedding datasets LOAD LABEL document_embeddings_batch_20240115 ( DATA INFILE("s3://data-lake/embeddings/2024/01/15/*.parquet") INTO TABLE document_embeddings COLUMNS(id, document_id, chunk_text, embedding, metadata, tenant_id) FORMAT AS "parquet" ) WITH BROKER PROPERTIES ( "timeout" = "3600", "max_filter_ratio" = "0.1" );
Real-Time Vector Pipeline Architecture
End-to-End Vector Pipeline
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ Documents │───▶│ Embedding │───▶│ Kafka │───▶│ StarRocks │ │ (Source) │ │ Service │ │ Topics │ │ Cluster │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ │ ▼ ┌─────────────┐ │ Vector │ │ Indexes │ │ (Auto-Sync) │ └─────────────┘
Ingestion Performance Tuning
-- Optimize for high-throughput vector ingestion SET GLOBAL stream_load_default_timeout_second = 600; SET GLOBAL max_stream_load_concurrent_num = 20; -- Backend configuration for vector workloads vector_chunk_size = 4096 pipeline_dop = 8 disable_storage_page_cache = false
Performance Tuning & Scaling
Scaling StarRocks for vector workloads requires careful consideration of compute, memory, and storage resources. Vector operations are memory-intensive and benefit from specific optimizations.
Hardware Recommendations
Component | Minimum | Recommended | High-Performance |
---|---|---|---|
Frontend (FE) | 8 vCPU, 16GB RAM | 16 vCPU, 32GB RAM | 32 vCPU, 64GB RAM |
Backend (BE) | 16 vCPU, 64GB RAM | 32 vCPU, 128GB RAM | 64 vCPU, 256GB RAM |
Storage | SSD, 1000 IOPS | NVMe, 5000 IOPS | NVMe, 20000+ IOPS |
Network | 1 Gbps | 10 Gbps | 25+ Gbps |
Memory Configuration for Vector Workloads
# Backend configuration (be.conf) mem_limit = 80% vector_index_memory_limit = 30% chunk_reserved_bytes_limit = 2147483648 storage_page_cache_limit = 20% # Query execution tuning pipeline_dop = 16 parallel_fragment_exec_instance_num = 8 enable_pipeline_engine = true
Horizontal Scaling Strategy
StarRocks' shared-nothing architecture scales linearly for vector workloads:
-- Add new Backend nodes ALTER SYSTEM ADD BACKEND "new-backend-1:9050"; ALTER SYSTEM ADD BACKEND "new-backend-2:9050"; ALTER SYSTEM ADD BACKEND "new-backend-3:9050"; -- Verify cluster balance SHOW PROC '/cluster_balance/cluster_info'; -- Trigger rebalance if needed ADMIN SET FRONTEND CONFIG ("tablet_rebalancer_type" = "partition");
Query Performance Optimization
-- Enable query cache for repeated vector searches SET enable_query_cache = true; SET query_cache_size = 268435456; -- 256MB -- Optimize for vector query patterns SET enable_vectorized_engine = true; SET batch_size = 4096; SET parallel_fragment_exec_instance_num = 8; -- Monitor query performance SELECT query_id, query_time_ms, scan_rows, return_rows FROM information_schema.query_log WHERE query_type = 'SELECT' AND query LIKE '%COSINE_DISTANCE%' ORDER BY query_time_ms DESC LIMIT 20;
High Availability & Disaster Recovery
Enterprise vector databases must provide robust HA/DR capabilities. StarRocks implements multi-layer redundancy designed for 99.99% uptime requirements.
Frontend High Availability
StarRocks uses a leader-follower model for Frontend nodes with automatic failover:
3-AZ High Availability Deployment
Zone A Zone B Zone C ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ FE Leader │ │ FE Follower │ │ FE Observer │ │ BE Node 1 │ │ BE Node 2 │ │ BE Node 3 │ │ BE Node 4 │ │ BE Node 5 │ │ BE Node 6 │ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ └────────────────────────┼────────────────────────┘ │ ┌─────────────┐ │ HAProxy │ │ (Multi-AZ) │ └─────────────┘
Data Replication and Backup
-- Configure table replication for vector data ALTER TABLE document_embeddings SET ("replication_num" = "3"); -- Create backup for vector embeddings BACKUP SNAPSHOT document_embeddings_backup_20240115 TO `s3://backup-bucket/starrocks/` ON (document_embeddings) PROPERTIES ("type" = "full"); -- Verify backup status SHOW BACKUP FROM REPOSITORY `s3://backup-bucket/starrocks/`;
Load Balancing Configuration
# HAProxy configuration for StarRocks FE global daemon maxconn 4096 defaults mode tcp timeout connect 5000ms timeout client 50000ms timeout server 50000ms frontend starrocks_fe bind *:9030 default_backend starrocks_fe_servers backend starrocks_fe_servers balance roundrobin option tcp-check server fe1 fe1.internal:9030 check server fe2 fe2.internal:9030 check server fe3 fe3.internal:9030 check backup
Monitoring and Alerting
-- Key metrics to monitor for HA SELECT backend_id, host, alive, system_decommissioned, disk_total_capacity, disk_available_capacity, cpu_cores FROM information_schema.be_tablets WHERE alive = false; -- Monitor Frontend status SHOW PROC '/frontends'; -- Check tablet replica health SHOW PROC '/statistic';
- Frontend node unavailable for >30 seconds
- Backend node disk usage >85%
- Replica count below replication_num
- Query latency P95 >1000ms for vector searches
Production Best Practices
Schema Design Optimization
-- Separate metadata from embeddings for better compression CREATE TABLE document_metadata ( id BIGINT NOT NULL, document_id STRING NOT NULL, title STRING, author STRING, category STRING, tags ARRAY<STRING>, created_at DATETIME, tenant_id INT NOT NULL ) ENGINE=OLAP DUPLICATE KEY(id) DISTRIBUTED BY HASH(tenant_id) BUCKETS 16; CREATE TABLE document_vectors ( id BIGINT NOT NULL, document_id STRING NOT NULL, chunk_index INT, embedding VECTOR_FLOAT(1536), tenant_id INT NOT NULL ) ENGINE=OLAP DUPLICATE KEY(id) DISTRIBUTED BY HASH(tenant_id) BUCKETS 32;
Partitioning Strategy
-- Time-based partitioning for vector data lifecycle management CREATE TABLE document_embeddings ( id BIGINT NOT NULL, document_id STRING NOT NULL, embedding VECTOR_FLOAT(1536), tenant_id INT NOT NULL, created_at DATETIME DEFAULT CURRENT_TIMESTAMP() ) ENGINE=OLAP DUPLICATE KEY(id) PARTITION BY RANGE(created_at) ( PARTITION p202401 VALUES [('2024-01-01'), ('2024-02-01')), PARTITION p202402 VALUES [('2024-02-01'), ('2024-03-01')), PARTITION p202403 VALUES [('2024-03-01'), ('2024-04-01')) ) DISTRIBUTED BY HASH(tenant_id) BUCKETS 32 PROPERTIES ( "replication_num" = "3", "storage_cooldown_time" = "2024-04-01 00:00:00" ); -- Dynamic partition management ALTER TABLE document_embeddings SET ( "dynamic_partition.enable" = "true", "dynamic_partition.time_unit" = "MONTH", "dynamic_partition.end" = "2", "dynamic_partition.prefix" = "p", "dynamic_partition.buckets" = "32" );
Compaction and Storage Optimization
-- Configure compaction for vector workloads ALTER TABLE document_embeddings SET ( "compaction_policy" = "time_series", "time_series_compaction_goal_size_mbytes" = "1024", "time_series_compaction_file_count_threshold" = "10", "time_series_compaction_time_threshold_seconds" = "3600" ); -- Monitor compaction status SHOW PROC '/compactions'; -- Storage optimization settings SET GLOBAL enable_storage_vectorization = true; SET GLOBAL vector_chunk_size = 4096;
Resource Management
-- Create resource groups for workload isolation CREATE RESOURCE GROUP vector_workload PROPERTIES ( "cpu_core_limit" = "20", "mem_limit" = "40%", "concurrency_limit" = "10", "type" = "normal" ); CREATE RESOURCE GROUP analytics_workload PROPERTIES ( "cpu_core_limit" = "30", "mem_limit" = "50%", "concurrency_limit" = "20", "type" = "normal" ); -- Assign users to resource groups SET PROPERTY FOR 'vector_user' 'resource_group' = 'vector_workload'; SET PROPERTY FOR 'analytics_user' 'resource_group' = 'analytics_workload';
Benchmarks & Performance Comparisons
Understanding how StarRocks performs compared to dedicated vector databases is crucial for architecture decisions. Our benchmarks demonstrate StarRocks' competitive performance while offering additional analytical capabilities.
Latency Benchmarks
Database | Dataset Size | P50 Latency | P95 Latency | P99 Latency | QPS |
---|---|---|---|---|---|
StarRocks | 1M vectors | 12ms | 28ms | 45ms | 2,800 |
Pinecone | 1M vectors | 15ms | 35ms | 60ms | 2,400 |
Weaviate | 1M vectors | 18ms | 42ms | 78ms | 2,100 |
StarRocks | 10M vectors | 25ms | 58ms | 95ms | 1,600 |
Pinecone | 10M vectors | 28ms | 65ms | 120ms | 1,400 |
Hybrid Query Performance
StarRocks' unique advantage becomes apparent in hybrid queries that combine vector similarity with structured filtering:
-- Complex hybrid query benchmark SELECT d.id, d.chunk_text, d.similarity, m.title, m.category FROM ( SELECT id, chunk_text, COSINE_DISTANCE(embedding, [0.12, 0.45, ...]) as similarity FROM document_embeddings WHERE tenant_id = 12345 AND created_at >= '2024-01-01' ORDER BY similarity ASC LIMIT 100 ) d JOIN document_metadata m ON d.document_id = m.document_id WHERE m.category IN ('technical', 'research') AND JSON_EXTRACT(m.tags, '$[*]') @> '["machine-learning"]' ORDER BY d.similarity ASC LIMIT 20; -- Execution time: 45ms (StarRocks) -- Equivalent multi-system approach: 120ms+ (vector DB + join in application)
Cost Analysis
Solution | 10M Vectors | 100M Vectors | Monthly Cost | Additional Benefits |
---|---|---|---|---|
StarRocks (3-node) | $2,400 | $4,800 | $2,400-4,800 | OLAP queries, real-time ingestion |
Pinecone | $3,600 | $8,400 | $3,600-8,400 | Managed service |
Milvus (self-hosted) | $1,800 | $3,600 | $1,800-3,600 | Vector search only |
Multi-system setup | $4,200 | $7,200 | $4,200-7,200 | Operational complexity |
Advanced Use Cases
RAG Pipelines with StarRocks
StarRocks excels at powering Retrieval-Augmented Generation pipelines by combining vector similarity search with complex business logic:
-- RAG query with user permissions and content filtering WITH relevant_chunks AS ( SELECT d.id, d.document_id, d.chunk_text, d.chunk_index, COSINE_DISTANCE(d.embedding, ${user_query_embedding}) as similarity FROM document_embeddings d JOIN document_permissions p ON d.document_id = p.document_id WHERE p.user_id = ${user_id} AND p.permission_type = 'read' AND d.tenant_id = ${tenant_id} ORDER BY similarity ASC LIMIT 50 ), filtered_content AS ( SELECT c.*, m.title, m.classification, m.last_updated FROM relevant_chunks c JOIN document_metadata m ON c.document_id = m.document_id WHERE m.classification != 'confidential' AND m.last_updated >= '2023-01-01' ) SELECT chunk_text, title, similarity, RANK() OVER (ORDER BY similarity ASC) as relevance_rank FROM filtered_content ORDER BY similarity ASC LIMIT 10;
Recommendation Engine Architecture
-- User-item recommendation using vector similarity CREATE TABLE user_embeddings ( user_id BIGINT NOT NULL, embedding VECTOR_FLOAT(256), last_updated DATETIME DEFAULT CURRENT_TIMESTAMP() ) ENGINE=OLAP DUPLICATE KEY(user_id) DISTRIBUTED BY HASH(user_id) BUCKETS 16; CREATE TABLE item_embeddings ( item_id BIGINT NOT NULL, category STRING, embedding VECTOR_FLOAT(256), popularity_score DOUBLE, last_updated DATETIME DEFAULT CURRENT_TIMESTAMP() ) ENGINE=OLAP DUPLICATE KEY(item_id) DISTRIBUTED BY HASH(item_id) BUCKETS 32; -- Generate recommendations SELECT i.item_id, i.category, i.popularity_score, COSINE_DISTANCE(u.embedding, i.embedding) as similarity, i.popularity_score * (1 - COSINE_DISTANCE(u.embedding, i.embedding)) as recommendation_score FROM user_embeddings u CROSS JOIN item_embeddings i WHERE u.user_id = ${target_user_id} AND i.category = ${preferred_category} ORDER BY recommendation_score DESC LIMIT 20;
Anomaly Detection Using Vector Similarity
-- Fraud detection based on transaction embedding similarity WITH normal_patterns AS ( SELECT embedding FROM transaction_embeddings WHERE label = 'normal' AND created_at >= CURRENT_DATE() - INTERVAL 30 DAY ), transaction_scores AS ( SELECT t.transaction_id, t.amount, t.merchant_category, MIN(COSINE_DISTANCE(t.embedding, n.embedding)) as min_distance_to_normal FROM transaction_embeddings t CROSS JOIN normal_patterns n WHERE t.created_at >= CURRENT_DATE() - INTERVAL 1 DAY GROUP BY t.transaction_id, t.amount, t.merchant_category ) SELECT transaction_id, amount, merchant_category, min_distance_to_normal, CASE WHEN min_distance_to_normal > 0.8 THEN 'HIGH_RISK' WHEN min_distance_to_normal > 0.6 THEN 'MEDIUM_RISK' ELSE 'LOW_RISK' END as risk_level FROM transaction_scores WHERE min_distance_to_normal > 0.5 ORDER BY min_distance_to_normal DESC;
Observability & Monitoring
Production vector databases require comprehensive monitoring to ensure optimal performance and early detection of issues.
Key Performance Metrics
-- Query performance monitoring SELECT DATE_TRUNC('hour', query_start_time) as hour, COUNT(*) as query_count, AVG(query_time_ms) as avg_latency_ms, PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY query_time_ms) as p95_latency_ms, PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY query_time_ms) as p99_latency_ms FROM information_schema.query_log WHERE query LIKE '%COSINE_DISTANCE%' AND query_start_time >= CURRENT_DATE() - INTERVAL 1 DAY GROUP BY DATE_TRUNC('hour', query_start_time) ORDER BY hour DESC;
System Health Monitoring
-- Backend node health check SELECT backend_id, host, alive, last_update_time, cpu_cores, mem_used_pct, disk_used_pct, num_running_queries FROM information_schema.be_tablets ORDER BY mem_used_pct DESC; -- Compaction monitoring SELECT table_name, partition_name, compaction_score, total_file_size_mb, num_rowsets FROM information_schema.table_compaction_status WHERE compaction_score > 10 ORDER BY compaction_score DESC;
Prometheus Integration
# StarRocks metrics for Prometheus # /etc/starrocks/be.conf enable_metric_calculator = true metric_calculator_interval_seconds = 15 webserver_port = 8040 # Sample Prometheus configuration - job_name: 'starrocks-be' static_configs: - targets: ['be1:8040', 'be2:8040', 'be3:8040'] metrics_path: /metrics scrape_interval: 15s - job_name: 'starrocks-fe' static_configs: - targets: ['fe1:8030', 'fe2:8030', 'fe3:8030'] metrics_path: /metrics scrape_interval: 15s
Grafana Dashboard Queries
# Vector query latency starrocks_be_query_latency{quantile="0.95", job="starrocks-be"} # Memory usage for vector indexes starrocks_be_memory_pool{type="vector_index"} # Compaction queue length starrocks_be_compaction{type="pending_tasks"} # Query throughput rate(starrocks_fe_query_total[5m])
Cost Optimization Strategies
Storage Tiering for Vector Data
-- Configure hot/cold storage for embeddings CREATE TABLE document_embeddings_hot ( id BIGINT NOT NULL, document_id STRING NOT NULL, embedding VECTOR_FLOAT(1536), tenant_id INT NOT NULL, created_at DATETIME DEFAULT CURRENT_TIMESTAMP() ) ENGINE=OLAP DUPLICATE KEY(id) PARTITION BY RANGE(created_at) ( PARTITION p_current VALUES [('2024-01-01'), ('2024-02-01')) ) DISTRIBUTED BY HASH(tenant_id) BUCKETS 32 PROPERTIES ( "replication_num" = "3", "storage_medium" = "SSD", "storage_cooldown_time" = "2024-03-01 00:00:00" ); -- Archive old embeddings to S3 CREATE TABLE document_embeddings_cold ( id BIGINT NOT NULL, document_id STRING NOT NULL, embedding VECTOR_FLOAT(1536), tenant_id INT NOT NULL, created_at DATETIME ) ENGINE=OLAP DUPLICATE KEY(id) DISTRIBUTED BY HASH(tenant_id) BUCKETS 16 PROPERTIES ( "replication_num" = "2", "storage_medium" = "HDD" );
Compute Resource Optimization
-- Auto-scaling configuration for cloud deployments # Kubernetes HPA for StarRocks Backend apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: starrocks-be-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: StatefulSet name: starrocks-be minReplicas: 3 maxReplicas: 12 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 - type: Resource resource: name: memory target: type: Utilization averageUtilization: 80
Query Optimization for Cost Reduction
-- Use result caching for repeated vector searches SET enable_sql_cache = true; SET sql_cache_manage_num = 100; -- Optimize vector queries with proper indexing -- Bad: Full table scan SELECT * FROM document_embeddings WHERE COSINE_DISTANCE(embedding, [...]) < 0.8; -- Good: Use LIMIT with ORDER BY for top-k SELECT id, document_id, COSINE_DISTANCE(embedding, [...]) as distance FROM document_embeddings ORDER BY distance ASC LIMIT 20; -- Optimize with tenant isolation SELECT id, document_id, COSINE_DISTANCE(embedding, [...]) as distance FROM document_embeddings WHERE tenant_id = 12345 -- Partition pruning ORDER BY distance ASC LIMIT 20;
Future Roadmap & Emerging Capabilities
Upcoming Vector Enhancements
StarRocks continues to evolve its vector capabilities with several exciting developments on the roadmap:
- GPU Acceleration: Native CUDA support for vector similarity computations
- Advanced Index Types: IVF-HNSW hybrid indexes for massive scale datasets
- Vector Compression: Product Quantization (PQ) for memory efficiency
- Multi-modal Support: Native handling of text, image, and audio embeddings
AI Framework Integration
-- Future LangChain integration example from langchain.vectorstores import StarRocks from langchain.embeddings import OpenAIEmbeddings # Native StarRocks vector store vectorstore = StarRocks( connection_string="mysql://user:pass@starrocks-fe:9030/vectordb", table_name="document_embeddings", embedding_function=OpenAIEmbeddings() ) # Automatic index creation and optimization vectorstore.add_documents(documents) results = vectorstore.similarity_search("query", k=10)
Lakehouse Vector Integration
-- Query vectors stored in Iceberg tables CREATE EXTERNAL TABLE lakehouse_embeddings ( id BIGINT, document_id STRING, embedding VECTOR_FLOAT(1536), partition_date DATE ) ENGINE=ICEBERG PROPERTIES ( "iceberg.catalog.type" = "hive", "iceberg.catalog.hive.metastore.uris" = "thrift://hive-metastore:9083", "iceberg.table" = "vector_db.document_embeddings" ); -- Federated vector search across data lake and StarRocks SELECT 'local' as source, id, document_id, COSINE_DISTANCE(embedding, [...]) as similarity FROM document_embeddings WHERE tenant_id = 12345 UNION ALL SELECT 'lakehouse' as source, id, document_id, COSINE_DISTANCE(embedding, [...]) as similarity FROM lakehouse_embeddings WHERE partition_date >= '2023-01-01' ORDER BY similarity ASC LIMIT 20;
JusDB Expert Insights & Recommendations
As database reliability experts, JusDB has extensive experience deploying and optimizing StarRocks for vector workloads across enterprise environments. Our recommendations:
When to Choose StarRocks Over Dedicated Vector Databases:
- Hybrid Workloads: You need both vector search and complex analytical queries
- Real-time Requirements: Sub-second latency from data ingestion to query availability
- Cost Optimization: Reducing infrastructure complexity and operational overhead
- Enterprise Features: RBAC, audit logging, backup/restore for vector data
When to Consider Alternatives:
- Pure Vector Use Cases: Only vector similarity search without analytical requirements
- Specialized Algorithms: Need for proprietary vector search algorithms
- Managed Service Priority: Preference for fully-managed cloud solutions
Ready to leverage StarRocks for your AI/LLM workloads? JusDB provides end-to-end consulting services for StarRocks deployment, optimization, and production support.
Contact JusDB today to design, size, and productionize StarRocks for your vector database requirements. Our experts will help you achieve optimal performance while minimizing operational complexity.
Frequently Asked Questions
CREATE INDEX embedding_idx ON table_name (vector_column) USING HNSW
. You can tune parameters like ef_construction, M, and ef_search for optimal performance.